这篇文章列出了James开发的$r_{wg}$
( the inter-rater agreement index) 这个指标的计算方法,
$r_{wg}$是用于评估评分者内部一致性(inter-rater agreement index)的指标,
然后,我们给出了ICC ( intraclass correlation coefficients ) 的计算公式及其解释,
Intraclass相关系数(ICC):这是一种用于评估评分者内部一致性的常用指标,可以考虑到评分者与评分者之间的关系。
我们会先列出公式, 然后解释公式, 最后给出计算的工具。
什么是评分者内部一致性
评分者内部一致性(Inter-rater reliability)是指评分者对于相同的评分标准和评分对象,他们给出的评分的相似程度的度量。这是评估评分系统的有效性的重要因素,因为它表明评分是否是稳定和一致的。如果评分者内部一致性高,则可以更确信地依赖评分结果,而如果评分者内部一致性低,则说明评分结果可能不够稳定和一致。
有哪些统计指标可以计算评分者内部一致性
有许多统计指标可以计算评分者内部一致性,其中一些常用的指标包括:
- Kappa系数:这是一种常用的评分者内部一致性指标,它考虑了随机误差,并且可以应用于多个评分者和多个评分类别。
- Pearson相关系数:这是一种常用的相关系数,可以度量评分者间的线性关系。
- 均方根误差:这是一种常用的评分者内部一致性指标,可以表示评分者对于同一评分标准的评分结果的离散程度。
- Fleiss’ Kappa系数:这是一种用于多评分者和多评分类别情况的评分者内部一致性指标。
- Intraclass相关系数(ICC):这是一种用于评估评分者内部一致性的常用指标,可以考虑到评分者与评分者之间的关系。
- James’
$r_{wg}$
请注意,选择的统计指标取决于评分者的数量、评分的性质和评分结果的分布情况。
$r_{wg}$
计算公式
$$ r_{wg} = 1 - (S^2/t_E^2) $$
$S^2$
代表方差$t_E^2$
代表期望方差(评分者完全随机情况下的方差)
$t_E^2$
的计算公式如下(假定均匀分布):
$$ t_E^2 = (A^2 - 1) / 12 $$
- A代表评分等级,比如5级计分, A=5
这个公式的原理是, 方差代表了评分者的不一致程度,
但是如何评分者完全随机的评分, 这个不一致的程度会更大,代表了方差的最大值,
因此, 当$S^2$
趋近于$t_E^2$
时, $r_{wg}$
接近于0;
当$S^2$
趋近于0时,评分者的评分完全一致, $r_{wg}$
接近于1;
ICC 组内相关系数 计算公式
Intraclass Correlation Coefficient (ICC) 公式可以表示如下:
ICC = (MSB - MSW) / (MSB + (k-1) * MSW)
其中:
MSB:组间均方 (between-group mean square)
MSW:组内均方( within-group mean square)
k:表示评分者数量
具体计算方法如下:
- 对于每个评分者,计算该评分者给出的所有评分的平均值。
- 对所有评分者的平均评分求平均值,得到所有评分的总平均值。
- 对每个评分者的平均评分,计算该评分与所有评分的总平均值的差的平方。
- 将每个评分者的差的平方相加,得到MSB。
- 对于每个评分,计算该评分与该评分者的平均评分的差的平方。
- 将每个评分者的差的平方相加,除以评分数量,得到MSW。
- 用MSB和MSW计算ICC,公式如上。
使用Excel计算评分者一致性$r_{wg}$
我们使用Excel计算的目的是让你对计算公式有一个深入的理解。
数据
这是从论文中摘录的数据, 我们可以看到, 表格中是一个评定者对10个评定对象的打分情况。
如何计算该评定者的一致性。
录入数据
计算方差
使用Excel中的var函数,可以计算一组数据的方差:
计算理想方差
上面已经列出理想方差的计算方法, 我们的评分等级是5, 我们套用公式可以知道, Excel中的公式是:
计算$r_{wg}$
使用Excel计算组内相关系数ICC
数据
ANOVA分析
在Excel中有一个数据分析的插件, 它是Excel自带的, 但是需要你自己设置才能显示出来:
选中数据,也就是“A1:E11”这个区域:
打开excel中的“数据”标签, 找到下面的“数据分析”选项:
在打开的对话框中, 选择“Anova: Two-Factor Without Replication ”, 点击“ok”, 你就会看到下面的对话框:
点击“ok”, 你就可以计算得到ANOVA的结果:
最关键的一步就是根据公式计算ICC, 图中公式的颜色可以告诉你它的地址:
解读公式
根据Excel的“ Two Factor ANOVA without Replication”算法, 我们知道:
- MSRow = 25.7
- MSCol = 1.6
- MSE = 1.68
而ICC的定义是组间均方比总均方, 也就是:
$$ ICC = {var(\beta) \over {var(\alpha) + var(\beta) + var(e)}} $$
我们可以分别计算三个var:
var(β) = (MSRow – MSE)/k = (25.7 – 1.68)/4
var(ε) = MSE = 1.68
var(α) = (MSCol – MSE)/n = (1.6– 1.68)/10
至此, 我们应该讲清楚了具体的计算过程。
参考文献
L.R. James, R.G. Demaree, G. Wolf, Estimating within-group interrater reliability
with and without response bias, J. Appl. Psychol. 69 (1) (1984) 85–98.P.D. Bliese, Within-Group Agreement, Non-independence, and reliability: implications for data aggregation and analysis, in: K.J. Klein, S.W.J. Kozlowski (Eds.),
Multilevel Theory, Research, and Methods in Organizations, Jossey-Bass, San
Francisco, 2000, pp. 349–381https://real-statistics.com/reliability/interrater-reliability/intraclass-correlation/